Factorization of Latent Variables in Distributional Semantic Models

نویسندگان

  • Arvid Österlund
  • David Ödling
  • Magnus Sahlgren
چکیده

This paper discusses the use of factorization techniques in distributional semantic models. We focus on a method for redistributing the weight of latent variables, which has previously been shown to improve the performance of distributional semantic models. However, this result has not been replicated and remains poorly understood. We refine the method, and provide additional theoretical justification, as well as empirical results that demonstrate the viability of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Improvements to Distributional Sentence Similarity

Matrix and tensor factorization have been applied to a number of semantic relatedness tasks, including paraphrase identification. The key idea is that similarity in the latent space implies semantic relatedness. We describe three ways in which labeled data can improve the accuracy of these approaches on paraphrase classification. First, we design a new discriminative term-weighting metric calle...

متن کامل

Probabilistic Distributional Semantics with Latent Variable Models

We describe a probabilistic framework for acquiring selectional preferences of linguistic predicates and for using the acquired representations to model the effects of context on word meaning. Our framework uses Bayesian latent-variable models inspired by, and extending, the well-known Latent Dirichlet Allocation (LDA) model of topical structure in documents; when applied to predicate–argument ...

متن کامل

A corpus-based evaluation method for Distributional Semantic Models

Evaluation methods for Distributional Semantic Models typically rely on behaviorally derived gold standards. These methods are difficult to deploy in languages with scarce linguistic/behavioral resources. We introduce a corpus-based measure that evaluates the stability of the lexical semantic similarity space using a pseudo-synonym same-different detection task and no external resources. We sho...

متن کامل

A corpus-based evaluation method for Distributional Semantic Models

Evaluation methods for Distributional Semantic Models typically rely on behaviorally derived gold standards. These methods are difficult to deploy in languages with scarce linguistic/behavioral resources. We introduce a corpus-based measure that evaluates the stability of the lexical semantic similarity space using a pseudo-synonym same-different detection task and no external resources. We sho...

متن کامل

Inducing Latent Semantic Relations for Structured Distributional Semantics

Structured distributional semantic models aim to improve upon simple vector space models of semantics by hypothesizing that the meaning of a word is captured more effectively through its relational — rather than its raw distributional — signature. In accordance, they extend the vector space paradigm by structuring elements with relational information that decompose distributional signatures ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015